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Abstract 

Background: Mesenchymal stem cells (MSCs) are well known as a major immune modulator. A 

subgroup of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) has 

been recently found to play an immune/inflammatory regulatory role.  

We aimed to analyze and compare the gene expression levels of the NOD- like receptor family 

pyrin domain- containing proteins (NLRPs), such as NLRP6 and NLRP12, in Wharton’s jelly-

derived mesenchymal stem cells (WJ-MSCs) treated with interferon-gamma (IFN-γ), the pro-

inflammatory cytokine, and untreated cells as well.   

Methods: The immunophenotypic characterization of the isolated WJ-MSCs was performed by 

flow cytometry. Next, they were cultured with or without IFN-, followed by the comparison of 

expression level of NLRP6 and NLRP12 genes by using qPCR.  

Results: The treatment of cells with IFN-γ indicated a statistically significant increased 

expression of NLRP12 gene as compared to untreated cells while the expression of NLRP6 did 

not differ significantly between cells with or without IFN-γ treatment.  

Conclusion: The altered expression level of NLRP12 might be suggested its contributory role in 

the inflammatory regulation mediated by WJ-MSCs in response to the exposure to IFN-; 

however, additional studies are needed to validate its role in experimental inflammatory-related 

disease models.  
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Introduction 

Mesenchymal stem cells (MSCs) are well considered as the suppressor of immune/inflammatory 

responses, indicating their potential application in cell-based therapies (1, 2). Wharton's jelly 

MSCs (WJ-MSCs) possess lower immunogenicity related to both reduced expression of MHC 

and co-stimulatory molecules [B7-1 (CD80) and B7-2 (CD86)] (3, 4). This supports the 

development of MSC-based therapy under inflammatory conditions (5). The MSC-mediated 

immunomodulation occurs following the interaction of MSC with immune cells and their 

secretions, such as inflammatory cytokines (6). Interferon-gamma (IFN-γ) can regulate 

immune/inflammatory responses in both health and disease (7-9). The cytokine is necessary to 

either license or improve the immunosuppressive functions of MSCs, since MSCs-mediated 

suppression of cell proliferation and function has been reported in the presence of IFN-γ (10-12).   

The innate immunity is capable of determining MSC characteristics. Recently, the findings have 

shown the induction of pro-inflammatory phenotype of MSC1 and the anti-inflammatory 

phenotype of MSC2 (13). Nucleotide-binding oligomerization domain receptors (NOD-like 

receptors, NLRs), as key mediators of inflammatory responses, enable to identify pathogen-

associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMPs) (14, 

15). The inhibitory NLRs, in particular NLRP12 and NLRP6, is thought to negatively regulate 

the nuclear factor NF-κB pro-inflammatory signaling pathway, resulting in the attenuation of 

inflammatory response (16-18). This is attributed to the downregulated expression of IFN-related 

genes, induction of M2 macrophages-mediated immunosuppressive microenvironment, and 

promotion of P14ARF–Mdm2–P53-dependent cellular senescence (19-22). Of note, an 

upregulation of the NLRPs plays a role in the maintenance of HSCs (23). Furthermore, their 

negative regulatory functions have been reported during bacterial infections like 

L.monocytogenes and B.abortu, which is mediated through the dysregulation of NF-κB activation 

and increased production of pro-inflammatory cytokines (24, 25). Therefore, it is important to 

focus on the regulation of innate immune and inflammatory responses. In the present study, we 

aimed to evaluate the gene expression level of NLRP6 and NLRP12, known as possible negative 

regulators of inflammatory signaling, in WJ-MSCs treated with IFN-γ mimicking an 

inflammation scenario by real-time qPCR. Appropriate modulation of innate immune 

mechanisms may be permissive for the establishment and maintenance of immunosuppression in 

the inflammatory milieu.  

 

Method 

Isolation and culture of Wharton’s jelly MSCs 

The cells isolated from the umbilical cord in a study which had the approval of the institutional 

local ethics committee (IR.IAU.TABRIZ.REC.1398.029) was used for further evaluation in this 

study. This research was conducted at the Islamic Azad University of Ardabil Branch in 2021. 

After obtaining informed consent, the umbilical cords collected from full-term births after 

cesarean section and/or normal vaginal were transferred to the laboratory in normal saline and the 

cells were isolated by using a conventional tissue culture procedure. Briefly, the cords were cut 

into 2 cm pieces soaked in Hanks’ balanced salt solution (HBSS) and WJ-MSCs was chopped 

into small pieces after removal of the vessels. Cells were then cultured in low glucose Dulbecco’s 

modified Eagle’s medium (DMEM) (Gibco, Germany) supplemented with 20% fetal bovine 

serum (FBS) (Gibco, Germany), 1% penicillin/streptomycin (Sigma, USA), and 1% amphotericin 

B (Sigma, USA). They were incubated at 37°C in 5% CO2 humidified atmosphere, followed by 

the examination of cell cultures every three days with an inverted microscope to check the 



 

 

possibility of contamination and their maintenance for 10 days in an incubator. Following the 

identification of first mesenchymal stem cell, the renewal of media was performed every three 

days to reach 70-80% confluence (26). Subsequently, the cells were harvested using 0.25% 

trypsin-ethylenediaminetetraacetic acid (EDTA) (Gibco, UK) and then passaged to new flasks.  

Flow cytometry analysis in Wharton's jelly stem cells   

Immunophenotyping of the isolated MSCs was performed by flow cytometry. To perform this, 

cells were dissolved in a stain solution, and a cell suspension with 1-2106 cells/mL was 

prepared. Antibodies against MSC surface markers CD34, CD44, CD45, CD73, CD90, and 

CD105 were then added to each tube according to the manufacturer’s protocol, followed by an 

incubation period. Isotype antibodies were used to rule out the background fluorescence using the 

same procedure. The cells were finally analyzed using a FACSCalibur flow cytometer (BD 

Biosciences, USA), and FlowJo software (version 7.6.1) was used for subsequent analysis.  

RNA isolation and cDNA synthesis  

Wharton's jelly-derived MSCs (0.5 106 cells/mL) were divided into two groups; one group was 

treated with IFN-γ (20 ng/mL) for 24 hours, and the other remained untreated (27). Note, a short-

term exposure to the pro-inflammatory cytokine IFN-γ (as mimicked by 24-hour licensing) has 

been documented to enhance immunomodulatory capacities of cultured human MSCs, but did not 

induce cell apoptosis (28). Subsequently, total RNA was extracted using the One-Step RNA 

Reagent (Bio Basic) kit according to the manufacturer's instructions. Treatment with DNase I 

(Thermo Fisher Scientific, USA) was also performed to remove genomic contamination from the 

extracted RNA samples. The ratio of absorbance at 260 and 280 nm was used for purity 

assessment of RNA samples. RNA quality was also assessed using agarose gel electrophoresis. 

These RNA samples were reversely transcribed into cDNA (Complementary DNA) using the 

PrimeScriptTM RT Reagent Kit (Takara, Japan) according to the manufacturer's protocol. A 

polymerase chain reaction (PCR) amplification for each target genes was carried out in triplicate 

wells in which the reaction mixture (total volume 20 l) contained 12.5 l of master mix, 1 l of 

each forward and reverse primers, 1l of cDNA, and 4.5 l sterile distilled water under following 

conditions: 10 minutes at 95oC followed by 35 cycles of 40 seconds at 95oC, 30 seconds at 60oC, 

and 30 seconds at 72oC, with 5 minutes at 72oC for final extension. The same PCR condition was 

used for amplification of the NLRP6 and GAPDH genes except that the annealing temperature 

was 63oC and 59oC, respectively. A negative control containing no template was used as well. 

The amplification products were analyzed by 1.5% agarose gel electrophoresis and visualized by 

safe nucleic acid staining reagent. 

Real-time quantitative PCR (qPCR) 

The mRNA expression levels of target genes in the treated and untreated samples were quantified 

by qRT-PCR using the SYBR Premix Ex Taq II kit (Takara, Japan) according to the 

manufacturer's procedures. The real-time PCR was performed in a final volume of 20 μl 

containing 10 μl of SYBR master mix, 0.5 μl of each forward and reverse primer, and 2 μl of 

template cDNA. The cycling conditions were 95°C for 10 minutes followed by 45 cycles of 95°C 

for 10 seconds, an annealing temperature (varies for different genes) for 30 seconds, and 72°C for 

20 seconds. The melting temperature cycle was performed from 55°C to 95°C to generate a melt 

curve chart for confirmation of product specificity. Duplicate reactions were run for each gene in 

the Rotor-Gene 6000 thermal cycler (Qiagen, Netherlands). The cyclic threshold (CT) values 

were used to analyze the expression levels via the 2-ΔΔCt method. The expression level of 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts was measured and used 



 

 

for normalizing the gene expressions. The same procedure was also used for a negative template 

control. The primer sequences used in this study are listed in Table 1.  

Statistical analysis 

To statistically analyze the data, the GraphPad Prism software (version 5.04) was used. The 

results were analyzed using Mann–Whitney tests and presented as mean ± SD. A value of P<0.05 

was considered statistically significant. 

 

Result 

Morphological and immunophenotypic characteristics of WJ-MSCs  

After the WJ-MSCs pieces were plated and cultured for approximately 10 to 14 days, the stromal 

cells with fibroblast-like appearance were dissociated around tissue sections, which had been 

adhered to the culture flask (29). In the following week, these cells multiplied and grew around 

the adherent tissue pieces after the removal of tissue pieces, as the tissue culture flask was 

covered. They were examined with an inverted microscope during the culture period. The cells 

were then divided into several flasks when 80% confluence was achieved. The MSCs grown from 

the primary culture of human umbilical cord blood are indicated in Figure 1. Flowcytometric 

analysis showed the expression of common MSCs markers CD44, CD90, CD105, and CD73 on 

the isolated cells, whereas no expression of CD34 and CD45 markers was observed in these cells 

(Figure 2).  

Real-time qPCR results 

After cDNA synthesis, the cDNA was amplified with specific primers for NLRP12, NLRP6 and 

GAPDH by RT-PCR. The desired bands were observed in the 250 bp, 181 bp and 218 bp on gel 

electrophoresis, respectively (Figure 3). Expression levels of NLRP6 and NLRP12 mRNA 

transcripts were analyzed using qRT-PCR in either untreated WJMSCs (control) or WJMSCs 

treated with IFN-γ after 24 hours. Expression levels of the target genes were normalized against 

GAPDH mRNA expression as housekeeping gene, and the normalized values were calculated 

using 2-ΔΔCt method. As it is indicated in Figure 4, while no difference in expression levels of 

NLRP6 was shown between untreated and IFN-γ-treated cells, the cells treated with IFN-γ 

cytokine were shown to be highly enriched with NLRP12 mRNA transcripts compared to the 

untreated control group (P≤ 0.05).  

 

Discussion 

The immunosuppressive capacity of MSCs make them a promising alternative 

immune/inflammation modulatory therapeutic approach (28). Considering the importance of 

NLRs in the inflammatory response, we were interested in evaluating the expression level of 

negative regulators of NF-κB signaling pathway, such as NLRP6 and NLRP12, following the 

treatment of MSCs with the pro-inflammatory cytokine IFN-. Interestingly, IFN-γ pre-licensing 

enhances immunomodulatory capacities of cultured human MSCs in inflammatory conditions 

(29). However, the underlying effector mechanisms of MSCs generating a suitable immune 

modulatory microenvironment needs to be investigated. 

MSCs modulate the host immune responses through various mechanisms (30). Nicola et al. (11) 

have reported dose-dependent anti-proliferative effect of MSCs on T lymphocytes in the mixed 

lymphocyte culture (MLC) response. The NLRs participate in key mechanisms of immune 

responses, including antigen presentation (NLRC5) and the modulation of inflammation 

(NLRC3, NLRP6, NLRP12, NLRX1) (22). The NLRP12 has been indicated to negatively 

regulate T cell responses and IL-4-associated inflammation in experimental autoimmune 



 

 

encephalomyelitis (EAE) disease (31, 32). In another study, NLRP6 deficiency is found to 

increase an inflammation and induce tumorigenesis (33). 

In this study, the expression level of NLRP6 and NLRP12 was evaluated in MScs isolated from 

Wharton's jelly of the human umbilical cords after treatment with IFN-, since they can regulate 

an inflammatory signaling. It was observed that the expression level of NLRP12 in the WJ-MSCs 

treated with IFN-γ was higher than in the control group, while the treated group exhibited no 

difference in NLRP6 expression. This might be resulted from the low dose of INF- or 

insufficient of the treatment duration. When considering the dominant role of IFN- in MSCs 

licensing, it is necessary to adjust the levels of this cytokine in the setting of an inflammatory 

response (34, 35). Another possibility is that INF- by itself may be incapable of mimicking the 

in vivo inflammatory condition to remarkably induce the NLRP6 gene expression. Moreover, the 

NLRP6 expression can be inhibited through miRNA (36). Thus, the RNA and/or protein products 

of other genes may serve to regulate its expression. 

The NLRP12 has a regulatory function in the innate immune activation in type I interferon (IFN-

I)–dependent manner, as demonstrated by its overactivation under low NLRP12 expression (37). 

Stimulation with IFN- plus TNF has been shown to regulate PANoptosis (characterized by 

pyroptosis, apoptosis and necroptosis) by modulating NLRP12 expression (38). Other study has 

revealed that INF- priming and NLRP12/NLRP3-dependent activation of caspase 1 mediate 

hypersensitivity to secondary bacterial infection during malaria (39). In addition, the NLRP12 

suppresses NF-B and ERK activation associated with the inhibition of inflammatory cytokines 

and nitric oxide production in tumorigenesis (30, 40). Despite the role of NLRP6 deficiency in 

the reduction of IFN-γ production and augmentation of caspase-1 activation (41), its 

overexpression may lead to the attenuation of cell proliferation (21). Presumably, unchanged 

NLRP6 expression in treated MScs might serve a protective role in the maintenance of MSC 

survival; however, its effect on the capability of modulating inflammation needs to be clarified. 

Of note, their regulatory mechanism and additional functions should be investigated using 

different experimental settings. The IFN- mimicking an inflammatory environment may 

contribute to the enhanced gene expression in treated WJ-MSCs. However, multiple factors can 

play a role in determining either attenuation and/or activation of inflammation. In this regard, the 

findings of our study showed the expression of NLRC3 and NLRC5 genes at high levels in IFN--

treated WJ-MSCs as compared to untreated cells (42).  

This study provides insight into new gene targets identification involved in the modulating 

activity of MSCs. Nevertheless, the modulatory role of MSCs expressing NLRs on the function 

and regulation of innate immune signaling pathways needs to be evaluated under various in vitro 

and in vivo inflammatory conditions.  

 

Conclusion  

Regarding the reported anti-inflammatory effects of a subgroup of NLR family, this study 

demonstrated the modulatory effect of pro-inflammatory cytokine IFN-, known as a major 

player during a variety of pathological situations and tissue injury, on the expression level of 

NLRP12 in the treated MSCs. However, subsequent research is required to examine its functional 

association with the underlying mechanisms probably involved in MSC-mediated modulation in 

dose- and/or time-dependent manners. 
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Table 1. Primer Sequences used for RT-PCR and qPCR assays 
 

Size (bp) Primer sequence (5'- 3') Gene 

181 
F: GCATGGACGTGGCTGTTCT 

R: GCTGGCAGTTGTTTTGTGGT 
NLRP6 

250 
F: TTACCTGACCAACAACGCC 

R: CAGCAGCCAATGTCCAAAT 
NLRP12 

218 
F: GAAGGTGAAGGTCGGAGTC 

R: GAAGATGGTGATGGGATTTC 
GAPDH 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Human umbilical cord dissection and isolation of cells; minced human umbilical cord 

tissue was then cultured to release mesenchyme stem cells. A: The Morphological characteristics 

of MSCs isolated from WJ-MSCs. B: Cell buds observed after 10-14 days of primary culture 

growing around the WJ-MSCs tissue section (40×). C: After the cells were passaged, the adherent 

cells with fibroblast-like appearance exhibited a high proliferative ability and covered the culture 

flask (40×). 
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Figure 2. Immunophenotyping results of WJ-MSCs. White-filed histogram and grey-filled 

histogram represent fluorescence intensity (log) of cells stained with isotype control and specific 

antibodies, respectively. 
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Figure 3. Gel electrophoresis results of the RT-PCR product of the WJ-MSCs. A: NLRP12 gene, 

B: NLRP6 gene, C: GAPDH gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. NLRP12 and NLRP6 gene expression in both untreated and IFN-γ-treated WJ-MSCs. 

*; P≤ 0.05, ns; not significant. 

 

 

 

 

 

 


